Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second
نویسندگان
چکیده
Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μFTP’s broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon’s explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.
منابع مشابه
One-shot Three-dimensional Surface Profilometry Using Dmd-based Two-frequency Moiré and Fourier Transform Technique
This article presents an optical measurement method for acquiring rapidly accurate geometric 3-D surface morphology of objects. To achieve high-speed profilometry and avoid disturbance due to in-field vibration, one-shot Fourier transform profilometry (FTP) using twowavelength digital moiré pattern was developed to detect the morphology of the measured object at a speed of up to 60 frames or mo...
متن کاملSingle-shot absolute 3D shape measurement with Fourier transform profilometry.
Fourier transform profilometry (FTP) is one of the frequently adopted three-dimensional (3D) shape measurement methods due to its ability to recover single-shot 3D shapes, yet it is challenging to retrieve the absolute phase map solely from one single grayscale fringe image. This paper presents a computational framework that overcomes this limitation of FTP with digital fringe projection (DFP)....
متن کاملImage Processing for 3D Reconstruction Using a Modified Fourier Transform Profilometry Method
An image processing algorithm based on the Fourier Transform Profilometry (FTP) method for 3D reconstruction purposes is presented. This method uses a global and local analysis for the phase unwrapping stage and obtains better results than using a simple unwrapping algorithm in the normal FTP method. A sinusoidal fringe pattern of known spatial frequency is firstly projected on a reference fram...
متن کاملPixel-by-pixel absolute three-dimensional shape measurement with modified Fourier transform profilometry
The single-pattern Fourier transform profilometry (FTP) and double-pattern modified FTP methods have great value in high-speed three-dimensional shape measurement, yet it is difficult to retrieve absolute phase pixel by pixel. This paper presents a method that can recover absolute phase pixel by pixel for the modified FTP method. The proposed method uses two images with different frequencies, a...
متن کاملWavelet Transform Analysis of Truncated Fringe Patterns in 3-D Surface Profilometry
Wavelet transform analysis of projected fringe pattern for phase recovery in 3-D shape measurement of objects is investigated. The present communication specifically outlines and evaluates the errors that creep in to the reconstructed profiles when fringe images do not satisfy periodicity. Three specific cases that give raise to non-periodicity of fringe image are simulated and leakage effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.10930 شماره
صفحات -
تاریخ انتشار 2017